Meeting report-Small GTPases in membrane processes: FASEB summer research conference

Traffic. 2019 Mar;20(3):259-262. doi: 10.1111/tra.12633. Epub 2019 Feb 4.

Abstract

In September 2018, conference organizers Nava Segev (University of Illinois, Chicago) and Marino Zerial (MPI, Dresden) hosted the 5th FASEB Meeting in Small GTPases in Membrane Processes: Trafficking, Autophagy and Disease at the National Conference Center in Leesburg, Virginia. With over 100 attendees from across the globe sharing their varied expertise and interests, we came together with the common goal of gaining a better understanding of how small GTPases and their regulators act in both canonical and non-canonical pathways to conduct a diversity of essential cellular functions. A broad range of disciplines was covered in this meeting, including the study of biophysical and structural properties of these proteins, functional studies to get at the roles of these proteins in various cellular contexts (eg, ciliary function, mitophagy, cell motility, cell cycle, and development), and translational approaches to understand the greater implications of small GTPases and their regulators in multicellular systems and disease pathology. This meeting provided attendees with the opportunity to discuss pressing questions that are driving the study of small GTPases and to explore directions for the future. Of particular note, both formal talks and informal discussions very clearly highlighted the clinical importance of these proteins and pathways, the ways in which cutting edge imaging technologies are expanding our understanding of them, and the need to work better in groups to tackle the larger questions of how GTPases contribute to cellular homeostasis or dysfunction. In this meeting report, we focus upon these three themes, as they have the potential to help shape our future studies of both the biology of small GTPases and their roles in a wide array of fundamental cellular functions.

Keywords: ARF; GAP; Rab; actin; autophagy; cell migration; cilia; endocytosis; focal adhesion; membrane traffic; microtubule.

MeSH terms

  • Animals
  • Congresses as Topic*
  • Humans
  • Monomeric GTP-Binding Proteins / chemistry
  • Monomeric GTP-Binding Proteins / genetics
  • Monomeric GTP-Binding Proteins / metabolism*
  • Societies, Scientific
  • United States

Substances

  • Monomeric GTP-Binding Proteins