Stationary polaron properties in organic crystalline semiconductors

Phys Chem Chem Phys. 2019 Jan 30;21(5):2727-2733. doi: 10.1039/c8cp06915h.

Abstract

Polarons play a crucial role in the charge transport mechanism when it comes to organic molecular crystals. The features of their underlying properties - mostly the ones that directly impact the yield of the net charge mobility - are still not completely understood. Here, a two-dimensional Holstein-Peierls model is employed to numerically describe the stationary polaron properties in organic semiconductors at a molecular scale. Our computational protocol yields model parameters that accurately characterize the formation and stability of polarons in ordered and disordered oligoacene-like crystals. The results show that the interplay between the intramolecular (Holstein) and intermolecular (Peierls) electron-lattice interactions critically impacts the polaron stability. Such an interplay can produce four distinct quasi-particle solutions: free-like electrons, metastable polarons, and small and large polarons. The latter governs the charge transport in organic crystalline semiconductors. Regarding disordered lattices, the model takes into account two modes of static disorder. Interestingly, the results show that intramolecular disorder is always unfavorable to the formation of polarons whereas intermolecular disorder may favor the polaron generation in regimes below a threshold for the electronic transfer integral strength.