Effects of rapid evolution on species coexistence

Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2112-2117. doi: 10.1073/pnas.1816298116. Epub 2019 Jan 18.

Abstract

Increasing evidence for rapid evolution suggests that the maintenance of species diversity in ecological communities may be influenced by more than purely ecological processes. Classic theory shows that interspecific competition may select for traits that increase niche differentiation, weakening competition and thus promoting species coexistence. While empirical work has demonstrated trait evolution in response to competition, if and how evolution affects the dynamics of the competing species-the key step for completing the required eco-evolutionary feedback-has been difficult to resolve. Here, we show that evolution in response to interspecific competition feeds back to change the course of competitive population dynamics of aquatic plant species over 10-15 generations in the field. By manipulating selection imposed by heterospecific competitors in experimental ponds, we demonstrate that (i) interspecific competition drives rapid genotypic change, and (ii) this evolutionary change in one competitor, while not changing the coexistence outcome, causes the population trajectories of the two competing species to converge. In contrast to the common expectation that interspecific competition should drive the evolution of niche differentiation, our results suggest that genotypic evolution resulted in phenotypic changes that altered population dynamics by affecting the competitive hierarchy. This result is consistent with theory suggesting that competition for essential resources can limit opportunities for the evolution of niche differentiation. Our finding that rapid evolution regulates the dynamics of competing species suggests that ecosystems may rely on continuous feedbacks between ecology and evolution to maintain species diversity.

Keywords: biodiversity; character displacement; competition; diversity maintenance; eco-evolutionary dynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Analysis of Variance
  • Biodiversity*
  • Biological Evolution*
  • Models, Theoretical
  • Population Dynamics
  • Quantitative Trait, Heritable
  • Selection, Genetic*

Associated data

  • figshare/10.6084/m9.figshare.7599095.v1