Exploring the Mechanism of a Chiral N-Alkyl Imine-Based Light-Driven Molecular Rotary Motor at MS-CASPT2//CASSCF and MS-CASPT2//(TD) DFT Levels

Chemistry. 2019 Mar 15;25(16):4194-4201. doi: 10.1002/chem.201806152. Epub 2019 Feb 22.

Abstract

The working mechanism including the photoisomerization and thermal isomerization steps of a chiral N-alkyl imine-based motor synthesized by Lehn et al. are revealed by MS-CASPT2//CASSCF and MS-CASPT2//(TD-)DFT methods. For the photoisomerization process of the imine-based motor, it involves both the bright (π,π*) state and the dark (n,π*) state. In addition, the MECI has similar geometry and energy to the minimum of the S1 state, which shows that the process is barrierless and keeps the unidirectionality of rotation well; the result confirms the imine-based motor is a good candidate for a light-driven molecular rotary motor. For the thermal isomerization process of the imine-based motor, there are two even isomerization paths: one with the mechanism of the in-plane N inversion, the energy barriers of which are 29.6 kcal mol-1 at MS3-CASPT2//CAM-B3LYP level and 29.2 kcal mol-1 at MS3-CASPT2//CASSCF level; the other with the mechanism of ring inversion of the cycloheptatriene moiety, with energy barriers of 28.1 kcal mol-1 at MS3-CASPT2//CAM-B3LYP level and 18.1 kcal mol-1 at MS3-CASPT2//CASSCF level. According to the structural feature of the stator moiety, the imine molecule can be used as a two-step or a four-step light-driven rotary motor.

Keywords: CASSCF; conical intersections; density functional calculations; molecular motors; photoisomerization.