Unusual interfacial magnetic interactions for τ-MnAl with Fe(Co) atomic layers

Phys Chem Chem Phys. 2019 Jan 30;21(5):2443-2452. doi: 10.1039/c8cp06599c.

Abstract

The interfacial magnetic interaction and coupling mechanism for τ-MnAl with Fe(Co) atomic layers have been studied using first principles calculations. The stable surface and interface were firstly determined by the surface energy of τ-MnAl and interface energy of τ-MnAl/Fe(Co) films, respectively. Their magnetic coupling interactions were investigated by varying the Fe(Co) atomic layer numbers. It is noted that both Fe and Co exhibited ferromagnetic coupling with τ-MnAl. Interestingly, an unusual oscillation phenomenon of magnetic coupling for τ-MnAl with Fe(Co) atomic layers was observed depending on the layer thickness of Fe(Co). Moreover, Fe and Co showed different oscillation modes. The energy difference between antiferromagnetic and ferromagnetic states is larger for τ-MnAl/Fe and τ-MnAl/Co when the Fe(Co) layer numbers are even and odd, respectively. Their mechanisms were analyzed based on the band structures and the confinement of electrons in quantum wells. It is found that the magnetic coupling oscillation in τ-MnAl/Fe originated from both the spin up Δ1 band and spin down Δ5 band at the [capital Gamma, Greek, macron] points. Comparatively, the oscillation of τ-MnAl/Co is due to the spin up band at the X[combining macron] point. The present results could provide insight to further understand interfacial exchange interactions among magnetic layers.