Effects of Alterations to the CX3C Motif and Secreted Form of Human Respiratory Syncytial Virus (RSV) G Protein on Immune Responses to a Parainfluenza Virus Vector Expressing the RSV G Protein

J Virol. 2019 Mar 21;93(7):e02043-18. doi: 10.1128/JVI.02043-18. Print 2019 Apr 1.

Abstract

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif. The CX3C motif and sG are thought to interfere with host immune responses and have been suggested to be omitted from a vaccine. We used a chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express RSV wild-type (wt) G and modified forms, including sG alone, mG alone, mutants with ablated CX3C, and G with enhanced packaging into vector virions. In hamsters, these viruses replicated to similar titers. When assayed with a complement-enhanced neutralization assay in Vero cells, sG did not reduce the serum RSV- or PIV3-neutralizing antibody (NAb) responses, whereas ablating CX3C drastically reduced the RSV NAb response. Protective efficacy against RSV challenge was not reduced by sG but was strongly dependent on the CX3C motif. In ciliated human airway epithelial (HAE) cells, NAbs induced by wt G, but not by wt F, completely blocked RSV infection in the absence of added complement. This activity was dependent on the integrity of the CX3C motif. In hamsters, the rB/HPIV3 expressing wt G conferred better protection against RSV challenge than that expressing wt F. Codon optimization of the wt G further increased its immunogenicity and protective efficacy. This study showed that ablation of the CX3C motif or sG in an RSV vaccine, as has been suggested previously, would be ill advised.IMPORTANCE Human RSV is the leading viral cause of severe pediatric respiratory illness. An RSV vaccine is not yet available. The RSV attachment protein G is an important protective and neutralization antigen. G contains a conserved fractalkine-like CX3C motif and is expressed in mG and sG forms. sG and the CX3C motif are thought to interfere with host immune responses, but this remains poorly characterized. Here, we used an attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express various modified forms of RSV G. We demonstrated that strong antibody and protective responses could be induced by G alone, and that this was highly dependent on the integrity of the CX3C motif. There was no evidence that sG or the CX3C motif impaired immune responses against RSV G or the rB/HPIV3 vector. rB/HPIV3 expressing wt RSV G provides a bivalent vaccine against RSV and HPIV3.

Keywords: CX3C chemokine fractalkine; attachment protein; immune response; live vector vaccines; mucosal vaccines; neutralizing antibodies; parainfluenza virus; respiratory syncytial virus; viral glycoproteins.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing / immunology
  • Antibodies, Viral / immunology
  • Cattle
  • Child
  • Chlorocebus aethiops
  • Female
  • Genetic Vectors / immunology*
  • Humans
  • Macaca mulatta
  • Mesocricetus
  • Respiratory Syncytial Virus Infections / immunology*
  • Respiratory Syncytial Virus Infections / virology
  • Respiratory Syncytial Virus, Human / immunology*
  • Respirovirus / immunology*
  • Vero Cells
  • Viral Envelope Proteins / immunology*
  • Viral Fusion Proteins / immunology
  • Virion / immunology
  • Virus Replication / immunology

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Viral Envelope Proteins
  • Viral Fusion Proteins
  • attachment protein G