Performance comparison of DML, EML and MZM in dispersion-unmanaged short reach transmissions with digital signal processing

Opt Express. 2018 Dec 24;26(26):34288-34304. doi: 10.1364/OE.26.034288.

Abstract

In this paper, transmission performances of directly modulated laser (DML), electro-absorption modulated laser (EML) and Mach-Zehnder modulator (MZM) are experimentally compared in dispersion-unmanaged high-speed transmission systems with digital signal processing (DSP). We show that, although the DML based transmitter is often believed to be less favorable in C-band high-speed transmissions, it exhibits superior performance over the other two transmitters when either linear or nonlinear digital signal processing is adopted. By theoretical and experimental analysis, we reveal that the superiority of DML can be attributed to the compensation of fiber power fading by its inherent adiabatic chirp as well as the mitigation of chirp induced distortions by the linear or nonlinear equalization. Experimental results of 56Gb/s 4-level pulse amplitude modulation (PAM4) signals under various equalization schemes including linear feedforward equalization, simplified nonlinear Volterra equalization and partial response signaling are presented. Particularly, we show that for DML a 40km transmission distance can be achieved to satisfy the extended range-4 (ER4) Ethernet interconnect using a simplified Volterra equalizer, and a 20km transmission distance can be supported using a linear equalizer. In contrast, for MZM and EML, the achievable transmission distances are respectively 20km and 15km using the Volterra equalizer, respectively, and 15km and 10km using linear equalizer, respectively. Moreover, we show that even using the combination of the Volterra equalizer and partial response signaling, the transmission distances of MZM and EML based systems are limited to 30km and 20km.