Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity

Opt Express. 2018 Dec 24;26(26):34043-34059. doi: 10.1364/OE.26.034043.

Abstract

Integrating an absorbing thin film into a resonant cavity is the most practical way to achieve perfect absorption of light at a selected wavelength in the mid-to-far infrared, as required to target blackbody radiation or molecular fingerprints. The cavity is designed to resonate and enable perfect absorption in the film at the chosen wavelength λ. However, in current state-of-the-art designs, a still large absorbing film thickness (∼λ/50) is needed and tuning the perfect absorption wavelength over a broad range requires changing the cavity materials. Here, we introduce a new resonant cavity concept to achieve perfect absorption of infrared light in much thinner and thus, really nanoscale films, with a broad wavelength tenability by using a single set of cavity materials. It requires a nanofilm with giant refractive index and small extinction coefficient (found in emerging semi-metals, semi-conductors and topological insulators) backed by a transparent spacer and a metal mirror. The nanofilm acts both as absorber and multiple reflector for the internal cavity waves, which after escaping follow a fractal phasor trajectory. This enables a totally destructive optical interference for a nanofilm thickness more than 2 orders of magnitude smaller than λ. With this remarkable effect, we demonstrate angle-insensitive perfect absorption in sub - λ/100 bismuth nanofilms, at a wavelength tunable from 3 to 20 μm.