30 W, sub-kHz frequency-locked laser at 532 nm

Opt Express. 2018 Dec 24;26(26):33756-33763. doi: 10.1364/OE.26.033756.

Abstract

We report on the realization of a high-power, ultranarrow-linewidth, and frequency-locked 532 nm laser system. The laser system consists of single-pass and intra-cavity second harmonic generation of a continuous-wave Ytterbium doped fiber laser at 1064 nm in the nonlinear crystal of periodically poled lithium niobate and lithium triborate, respectively. With 47 W infrared input, 30 W green laser is generated through the type I critical phase matching in the intracavity lithium triborate crystal. The laser linewidth is measured to be on the order of sub-kHz, which is achieved by simultaneously locking the single-pass frequency doubling output onto the iodine absorption line R69 (36-1) at 532 nm. Furthermore, the phase locking between the laser system and another slave 1064 nm laser is demonstrated with relative frequency tunability being up to 10 GHz. Our results completely satisfy the requirements of 532 nm laser for quantum simulation with ultracold atoms.