Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments

J Genet Eng Biotechnol. 2018 Jun;16(1):175-180. doi: 10.1016/j.jgeb.2017.11.001. Epub 2017 Nov 20.

Abstract

Ficus religiosa is known as a long-lived multipurpose forest tree. The tree plays an important role for religious, medicinal, and ornamental purposes. However, the propagation rate of Ficus religiosa is low in natural habitat so the plant tissue culture techniques are an applicable method for multiplication of this valuable medicinal plants. Thus, the aim of this study is to understand the effect of different auxin/cytokinin ratios on indirect shoot organogenesis of this plant. According to our results, the maximum callus induction frequency (100%) was obtained on Murashige and Skoog (MS) medium supplemented with 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) plus 0.05 mg/l 6-benzylaminopurine (BAP) from petiole segments. For shoot induction purpose, the yellow-brownish, friable, organogenic calli were inoculated on shoot induction medium. On MS medium supplemented with 1.5 mg/l BAP and 0.15 mg/l Indole-3-butyric acid (IBA), 96.66% of the petiole-derived calli responded with an average number of 3.56 shoots per culture. The highest root formation frequency (96.66%), root number (5.5), and root length (4.83 cm) were achieved on MS medium containing 2.0 mg/l IBA plus 0.1 mg/l Naphthaleneacetic acid (NAA). The rooted shoots were successfully transferred to field condition and the substrate with the mixture of cocopeat and perlite (1:1) had the highest survival rate (96.66%). This is the first report of an effective in vitro organogenesis protocol for F. religiosa by indirect shoot organogenesis through axenic seedling derived petiole explants, which can be efficiently employed for conservation of this important medicinal plant species as well as the utilization of active biomolecules.

Keywords: Acclimatization; Callus formation; Growth regulators ratio; Multiplication.