A Real-Time Mismatch Detection Method for Underwater Database-Referenced Navigation

Sensors (Basel). 2019 Jan 14;19(2):307. doi: 10.3390/s19020307.

Abstract

Database-referenced navigation (DBRN) using geophysical information is often implemented on autonomous underwater vehicles (AUVs) to correct the positional errors of the inertial navigation system (INS). The matching algorithm is a pivotal technique in DBRN. However, it is impossible to completely eliminate mismatches in practical application. Therefore, it is necessary to perform a mismatch detection method on the outputs of DBRN. In this paper, we propose a real-time triple constraint mismatch detection method. The proposed detection method is divided into three modules: the model fitting detection module, the spatial structure detection module, and the distance ratio detection module. In the model fitting detection module, the navigation characteristics of AUVs are used to select the fitting model. In the spatial structure detection module, the proposed method performs the mismatch detection based on the affine transformation relationship between the INS-indicated trajectory and the corresponding matched trajectory. In the distance ratio detection module, we derive the distance ratio constraint between the INS-indicated trajectory and the corresponding matched trajectory. Simulations based on an actual geomagnetic anomaly base map have been performed for the validation of the proposed method.

Keywords: autonomous underwater vehicles; database-referenced navigation; inertial navigation system; mismatch detection; underwater navigation.