Pharmacokinetic Data Are Predictive of In Vivo Efficacy for Cefixime and Ceftriaxone against Susceptible and Resistant Neisseria gonorrhoeae Strains in the Gonorrhea Mouse Model

Antimicrob Agents Chemother. 2019 Feb 26;63(3):e01644-18. doi: 10.1128/AAC.01644-18. Print 2019 Mar.

Abstract

There is a pressing need for drug development for gonorrhea. Here we describe a pharmacokinetic (PK)/pharmacodynamic (PD) analysis of extended-spectrum cephalosporins (ESC) against drug-susceptible and drug-resistant gonococcal strains in a murine genital tract infection model. The PK determined in uninfected mice displayed a clear dose-response in plasma levels following single doses of ceftriaxone (CRO) (intraperitoneal) or cefixime (CFM) (oral). The observed doses required for efficacy against ESC-susceptible (ESCs) strain FA1090 were 5 mg/kg of body weight (CRO) and 12 mg/kg (CFM); these doses had estimated therapeutic times (the time that the free drug concentration remains above the MIC [fTMIC]) of 24 h and 37 h, respectively. No single dose of CRO or CFM was effective against ESC-resistant (ESCr) strain H041. However, fractionation (three times a day every 8 h [TIDq8h]) of a 120-mg/kg dose of CRO resulted in estimated therapeutic times in the range of 23 h and cleared H041 infection in a majority (90%) of mice, comparable to the findings for gentamicin. In contrast, multiple CFM doses of 120 or 300 mg/kg administered TIDq8h cleared infection in ≤50% of mice, with the therapeutic times estimated from single-dose PK data being 13 and 27 h, respectively. This study reveals a clear relationship between plasma ESC levels and bacterial clearance rates in the gonorrhea mouse model. The PK/PD relationships observed in mice reflected those observed in humans, with in vivo efficacy against an ESCs strain requiring doses that yielded an fTMIC in excess of 20 to 24 h. PK data also accurately predicted the failure of single doses of ESCs against an ESCr strain and were useful in designing effective dosing regimens.

Keywords: antibiotic resistance; cefixime; ceftriaxone; clearance; gonorrhea; mouse model; pharmacokinetics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / blood*
  • Anti-Bacterial Agents / pharmacology
  • Cefixime / blood*
  • Cefixime / pharmacology
  • Ceftriaxone / blood*
  • Ceftriaxone / pharmacology
  • Disease Models, Animal
  • Drug Resistance, Bacterial
  • Female
  • Gonorrhea / drug therapy*
  • Mice
  • Mice, Inbred BALB C
  • Microbial Sensitivity Tests
  • Neisseria gonorrhoeae / drug effects*

Substances

  • Anti-Bacterial Agents
  • Ceftriaxone
  • Cefixime