Activation of Sirtuin 3 and Maintenance of Mitochondrial Integrity by N-Acetylcysteine Protects Against Bisphenol A-Induced Kidney and Liver Toxicity in Rats

Int J Mol Sci. 2019 Jan 11;20(2):267. doi: 10.3390/ijms20020267.

Abstract

Mitochondrial impairment ensuing from oxidative imbalance is related to adverse consequences of bisphenol A (BPA), a globally utilized industrial chemical. Recent evidence reveals sirtuin 3 (SIRT3) as a key regulator of mitochondrial homeostasis; however, its role in BPA toxicity remains unidentified. This study explored the potential benefits of N-acetylcysteine (NAC), an effective antioxidant, against BPA toxicity in the kidney and liver, and examined whether SIRT3 was involved in this condition. Male Wistar rats were fed with vehicle, BPA (5, 50 mg/kg), BPA (50 mg/kg) plus NAC (100 mg/kg) and were evaluated after 5 weeks. NAC treatment significantly diminished BPA-induced kidney and liver functional disorders, histopathological alterations, oxidative stress, and apoptosis. The increased mitochondrial reactive oxygen species, the disrupted membrane potential, the swelling, and the impaired mitochondrial fission caused by BPA were also mitigated upon concurrent treatment with NAC. The benefits of NAC were associated with enhanced AMPK-PGC-1α-SIRT3 signaling protein expressions, which led to decreased acetylation of superoxide dismutase 2 (SOD2) and increased expression of mitochondrial antioxidant manganese superoxide dismutase (MnSOD). The findings demonstrate the efficacy of NAC in protecting BPA-induced kidney and liver injury, which, in part, is mediated by activating SIRT3 and improving mitochondrial function, dynamics, and oxidative imbalance.

Keywords: N-acetylcysteine; bisphenol A; mitochondria; oxidative stress; sirtuin 3; toxicity.

MeSH terms

  • Acetylcysteine / administration & dosage*
  • Acetylcysteine / pharmacology
  • Animals
  • Apoptosis / drug effects
  • Benzhydryl Compounds / toxicity*
  • Chemical and Drug Induced Liver Injury / metabolism
  • Chemical and Drug Induced Liver Injury / prevention & control*
  • Disease Models, Animal
  • Gene Expression Regulation / drug effects
  • Kidney Diseases / chemically induced
  • Kidney Diseases / metabolism
  • Kidney Diseases / prevention & control*
  • Male
  • Mitochondria / drug effects
  • Mitochondria / metabolism*
  • Mitochondrial Dynamics / drug effects
  • Oxidative Stress / drug effects
  • Phenols / toxicity*
  • Rats
  • Rats, Wistar
  • Signal Transduction / drug effects
  • Sirtuins / metabolism*
  • Superoxide Dismutase / metabolism

Substances

  • Benzhydryl Compounds
  • Phenols
  • SIRT3 protein, rat
  • Superoxide Dismutase
  • superoxide dismutase 2
  • Sirtuins
  • bisphenol A
  • Acetylcysteine