Enhanced Stain Removal and Comfort Control Achieved by Cross-Linking Light and Thermo Dual-Responsive Copolymer onto Cotton Fabrics

ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5414-5426. doi: 10.1021/acsami.8b19908. Epub 2019 Jan 28.

Abstract

Enhanced capabilities of stain removal and comfort control are simultaneously achieved by the light and thermo dual-responsive copolymer poly(triethylene glycol methyl ether methacrylate- co-ethylene glycol methacrylate- co-acrylamide azobenzene) (P(MEO3MA- co-EGMA- co-AAAB)) cross-linked on cotton fabrics. P(MEO3MA- co-EGMA- co-AAAB) is synthesized by sequential atom transfer radical polymerization with a molar ratio of 8 (MEO3MA):1 (EGMA):1 (AAAB). The MEO3MA units induce a thermoresponsive behavior to the copolymer. The hydrophilicity of the copolymer films can be further improved by the light-induced trans- cis isomerization of the AAAB units with UV radiation. The copolymer is facilely immobilized onto cotton fabrics with 1,2,3,4-butane tetracarboxylic acid as cross-linker. Due to the immobilization of P(MEO3MA- co-EGMA- co-AAAB), the hydrophilicity of the fabric surface is increased under UV radiation. Therefore, by simply installing a UV light source in the washing machine, better capability of stain removal is realized for the cross-linked cotton fabrics. It can prominently reduce the consumption of energy, water, and surfactants in laundry. In addition, the trans-AAAB units of the copolymer cause the cross-linked P(MEO3MA- co-EGMA- co-AAAB) layer to be more hydrophobic under ambient conditions. Hence, the copolymer can more easily collapse and form a porous structure on the fabrics. Thus, the air permeability of cotton fabrics cross-linked with P(MEO3MA- co-EGMA- co-AAAB) is enhanced by 13% at human body temperature as compared to P(MEO3MA- co-EGMA), giving improved comfort control during daily wear.

Keywords: copolymer; cotton fabrics; cross-linking; light-responsive; smart textiles; thermoresponsive.