3,4-Dimethoxycinnamic Acid as a Novel Matrix for Enhanced In Situ Detection and Imaging of Low-Molecular-Weight Compounds in Biological Tissues by MALDI-MSI

Anal Chem. 2019 Feb 19;91(4):2634-2643. doi: 10.1021/acs.analchem.8b03522. Epub 2019 Jan 29.

Abstract

Low-molecular-weight (low-MW) compounds have many essential functions in biological processes, and the molecular imaging of as many low-MW compounds as possible is critical for understanding complex biological processes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an emerging molecular-imaging technology that enables determination of the spatial distributions and the relative abundances of diverse endogenous compounds in tissues. New matrices suitable for the imaging of low-MW compounds by MALDI-MSI are important for the technological advancement of tissue imaging. In this study, 3,4-dimethoxycinnamic acid (DMCA) was evaluated as a new matrix for enhanced low-MW compound detection by MALDI-MSI because of its strong ultraviolet absorption, low matrix-ion related interferences below m/ z 500, and high ionization efficiency for the analysis of low-MW compounds. DMCA was successfully used for improved in situ detection of low-molecular-weight metabolites ( m/ z < 500) and lipids in rat liver, rat brain, and germinating Chinese-yew seed tissue sections. The use of DMCA led to the successful in situ detection of 303, 200, and 248 low-MW compound ion signals from these three tissues, respectively. Both MALDI-MS/MS and LC-MS/MS were used to identify these ion signals, leading to the identification of 115 low-MW compounds from rat liver (including 53 lipids, 29 oligopeptides, and 33 metabolites), 130 low-MW compounds from rat brain (including 104 lipids, 5 oligopeptides, and 21 metabolites), and 111 low-MW compounds from germinating Chinese-yew seeds (including 77 lipids, 22 oligopeptides, 8 flavonoids, and 4 alkaloids). A larger number of low-MW compounds could be detected and imaged when DMCA was used as the MALDI matrix than with other commonly used MALDI matrices such as 2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2-mercaptobenzothiazole, graphene oxide, and silver nanoparticles. Our work provides a new and powerful matrix for enhanced MALDI-MS profiling of low-MW compounds in both animal and plant tissues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / metabolism
  • Brain Chemistry
  • Cinnamates / chemistry*
  • Cinnamates / radiation effects
  • Limit of Detection
  • Lipids / analysis*
  • Liver / chemistry
  • Liver / metabolism
  • Male
  • Organic Chemicals / analysis*
  • Peptides / analysis*
  • Rats, Sprague-Dawley
  • Seeds / chemistry
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / methods
  • Taxus / chemistry
  • Ultraviolet Rays

Substances

  • Cinnamates
  • Lipids
  • Organic Chemicals
  • Peptides
  • 3-(3,4-dimethoxyphenyl)propenoic acid