The Aspergillus flavus rtfA Gene Regulates Plant and Animal Pathogenesis and Secondary Metabolism

Appl Environ Microbiol. 2019 Mar 6;85(6):e02446-18. doi: 10.1128/AEM.02446-18. Print 2019 Mar 15.

Abstract

Aspergillus flavus is an opportunistic fungal plant and human pathogen and a producer of mycotoxins, including aflatoxin B1 (AFB1). As part of our ongoing studies to elucidate the biological functions of the A. flavusrtfA gene, we examined its role in the pathogenicity of both plant and animal model systems. rtfA encodes a putative RNA polymerase II (Pol II) transcription elongation factor previously characterized in Saccharomyces cerevisiae, Aspergillus nidulans, and Aspergillus fumigatus, where it was shown to regulate several important cellular processes, including morphogenesis and secondary metabolism. In addition, an initial study in A. flavus indicated that rtfA also influences development and production of AFB1; however, its effect on virulence is unknown. The current study reveals that the rtfA gene is indispensable for normal pathogenicity in plants when using peanut seed as an infection model, as well as in animals, as shown in the Galleria mellonella infection model. Interestingly, rtfA positively regulates several processes known to be necessary for successful fungal invasion and colonization of host tissue, such as adhesion to surfaces, protease and lipase activity, cell wall composition and integrity, and tolerance to oxidative stress. In addition, metabolomic analysis revealed that A. flavusrtfA affects the production of several secondary metabolites, including AFB1, aflatrem, leporins, aspirochlorine, ditryptophenaline, and aflavinines, supporting a role of rtfA as a global regulator of secondary metabolism. Heterologous complementation of an A. flavusrtfA deletion strain with rtfA homologs from A. nidulans or S. cerevisiae fully rescued the wild-type phenotype, indicating that these rtfA homologs are functionally conserved among these three species.IMPORTANCE In this study, the epigenetic global regulator rtfA, which encodes a putative RNA-Pol II transcription elongation factor-like protein, was characterized in the mycotoxigenic and opportunistic pathogen A. flavus Specifically, its involvement in A. flavus pathogenesis in plant and animal models was studied. Here, we show that rtfA positively regulates A. flavus virulence in both models. Furthermore, rtfA-dependent effects on factors necessary for successful invasion and colonization of host tissue by A. flavus were also assessed. Our study indicates that rtfA plays a role in A. flavus adherence to surfaces, hydrolytic activity, normal cell wall formation, and response to oxidative stress. This study also revealed a profound effect of rtfA on the metabolome of A. flavus, including the production of potent mycotoxins.

Keywords: Aspergillus flavus; aflatoxin; genetic regulation; metabolome; mycotoxin; pathogenicity; rtfA; secondary metabolism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aflatoxin B1 / biosynthesis
  • Animals
  • Arachis / microbiology*
  • Aspergillus flavus / genetics
  • Aspergillus flavus / growth & development
  • Aspergillus flavus / metabolism*
  • Aspergillus flavus / pathogenicity*
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Gene Expression Regulation, Fungal
  • Moths / microbiology*
  • Plant Diseases / microbiology*
  • Secondary Metabolism
  • Transcriptional Elongation Factors / genetics
  • Transcriptional Elongation Factors / metabolism*
  • Virulence

Substances

  • Fungal Proteins
  • Transcriptional Elongation Factors
  • transcription factor S-II
  • Aflatoxin B1