Tuneable thermal expansion of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate

J Phys Condens Matter. 2019 Mar 27;31(12):125101. doi: 10.1088/1361-648X/aafdda. Epub 2019 Jan 11.

Abstract

Linear coefficient of thermal expansion is calculated for a mixture of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate (PEDOT:PSS) using density functional theory and the Debye-Grüneisen model. The linear coefficient of thermal expansion is a key factor in thermal management (thermal conductivity, thermal stress and thermal fatigue) of microelectronic and energy devices, being common applications of the conjugated polymeric PEDOT:PSS system. The obtained value of 53 × 10-6 K-1 at room temperature can be rationalised based on the electronic structure analysis. The PEDOT and PSS units are bonded by a dipole-dipole interaction between S in PEDOT and H in PSS. A C-C bond in a benzene ring (PSS) or thiophene (PEDOT) is up to 13 times stronger than the S-H bond. By adjusting the population of the S-H bonds by deprotonating PSS, the linear coefficient of thermal expansion can be enhanced by 57%. This allows for tuning the thermal properties of PEDOT:PSS in cutting-edge devices.