Uncover Topology by Quantum Quench Dynamics

Phys Rev Lett. 2018 Dec 21;121(25):250403. doi: 10.1103/PhysRevLett.121.250403.

Abstract

Topological quantum states are characterized by nonlocal invariants. We present a new dynamical approach for ultracold-atom systems to uncover their band topology, and we provide solid evidence to demonstrate its experimental advantages. After quenching a two-dimensional (2D) Chern band, realized in an ultracold ^{87}Rb gas from a trivial to a topological parameter regime, we observe an emerging ring structure in the spin dynamics during the unitary evolution, which uniquely corresponds to the Chern number for the postquench band. By extracting 2D bulk topology from the 1D ring pattern, our scheme displays simplicity and is insensitive to perturbations. This insensitivity enables a high-precision determination of the full phase diagram for the system's band topology.