z=2 Quantum Critical Dynamics in a Spin Ladder

Phys Rev Lett. 2018 Dec 14;121(24):247201. doi: 10.1103/PhysRevLett.121.247201.

Abstract

By means of inelastic neutron scattering we investigate finite temperature dynamics in the quantum spin ladder compound (C_{5}H_{12}N)_{2}CuBr_{4} (BPCB) near the magnetic field induced quantum critical point with dynamical exponent z=2. We observe universal finite-temperature scaling of the transverse local dynamic structure factor in spectacular quantitative agreement with long-standing theoretical predictions. At the same time, already at rather low temperatures, we observe strong nonuniversal longitudinal fluctuations. To separate the two, we make use of an intrinsic leg-exchange symmetry of the spin ladder. Complementary measurements of specific heat also reveal striking scaling behavior near the quantum critical point.