Nonlinear Actomyosin Elasticity in Muscle?

Biophys J. 2019 Jan 22;116(2):330-346. doi: 10.1016/j.bpj.2018.12.004. Epub 2018 Dec 13.

Abstract

Cyclic interactions between myosin II motor domains and actin filaments that are powered by turnover of ATP underlie muscle contraction and have key roles in motility of nonmuscle cells. The elastic characteristics of actin-myosin cross-bridges are central in the force-generating process, and disturbances in these properties may lead to disease. Although the prevailing paradigm is that the cross-bridge elasticity is linear (Hookean), recent single-molecule studies suggest otherwise. Despite convincing evidence for substantial nonlinearity of the cross-bridge elasticity in the single-molecule work, this finding has had limited influence on muscle physiology and physiology of other ordered cellular actin-myosin ensembles. Here, we use a biophysical modeling approach to close the gap between single molecules and physiology. The model is used for analysis of available experimental results in the light of possible nonlinearity of the cross-bridge elasticity. We consider results obtained both under rigor conditions (in the absence of ATP) and during active muscle contraction. Our results suggest that a wide range of experimental findings from mechanical experiments on muscle cells are consistent with nonlinear actin-myosin elasticity similar to that previously found in single molecules. Indeed, the introduction of nonlinear cross-bridge elasticity into the model improves the reproduction of key experimental results and eliminates the need for force dependence of the ATP-induced detachment rate, consistent with observations in other single-molecule studies. The findings have significant implications for the understanding of key features of actin-myosin-based production of force and motion in living cells, particularly in muscle, and for the interpretation of experimental results that rely on stiffness measurements on cells or myofibrils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actomyosin / chemistry*
  • Actomyosin / metabolism
  • Animals
  • Elasticity*
  • Humans
  • Muscle Contraction*
  • Nonlinear Dynamics*

Substances

  • Actomyosin

Grants and funding