Structural Determination and Nonlinear Optical Properties of New 1T‴-Type MoS2 Compound

J Am Chem Soc. 2019 Jan 16;141(2):790-793. doi: 10.1021/jacs.8b12133. Epub 2019 Jan 4.

Abstract

Noncentrosymmetric MoS2 semiconductors (1H, 3R) possess not only novel electronic structures of spin-orbit coupling (SOC) and valley polarization but also remarkable nonlinear optical effects. A more interesting noncentrosymmetric structure, the so-called 1T‴-MoS2 layers, was predicted to be built up from [MoS6] octahedral motifs by theoreticians, but the bulk 1T‴ MoS2 or its single crystal structure has not been reported yet. Here, we have successfully harvested 1T‴ MoS2 single crystals by a topochemical method. The new layered structure is determined from single-crystal X-ray diffraction. The crystal crystallizes in space group P31m with a cell of a = b = 5.580(2) Å and c = 5.957(2) Å, which is a √3 a × √3 a superstructure of 1T MoS2 with corner-sharing Mo3 triangular trimers observed by the STEM. 1T‴ MoS2 is verified to be semiconducting and possesses a band gap of 0.65 eV, different from metallic nature of 1T or 1T' MoS2. More surprisingly, the 1T‴ MoS2 does show strong optical second-harmonic generation signals. This work provides the first layered noncentrosymmetric semiconductor of edge-sharing MoS6 octahedra for the research of nonlinear optics.