Redefining MDR-TB: Comparison of Mycobacterium tuberculosis clinical isolates from Russia and Taiwan

Infect Genet Evol. 2019 Aug:72:141-146. doi: 10.1016/j.meegid.2018.12.031. Epub 2018 Dec 26.

Abstract

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are global challenges due to the limited number of effective drugs for treatment. Treatment with less than 4-5 effective drugs might lead to the further emergence of drug resistance and poor clinical outcomes. For better prediction of treatment outcomes, we compared drug-resistance profiles of consecutive clinical MDR Mycobacterium tuberculosis isolates from high- and low-burden settings. This was a retrospective cohort study. We analysed 225 and 229 MDR isolates from Moscow (Russia) and Taiwan, respectively, obtained between 2014 and 2015. Drug susceptibility testing was performed by the Bactec MGIT 960 automated system and the agar proportion method. Detection of resistance-associated mutations in the M. tuberculosis genome was carried out by an array and/or sequencing of selected loci. The principal differences between resistance profiles of MDR isolates in the two countries were the percentages of pre-XDR (40.9% vs. 14.8%) and XDR (34.7% vs. 1.7%) isolates, both of which were significantly higher in Moscow isolates. Forty-eight (33%) of 147 MDR and pre-XDR Russian isolates fall into a group with less than four effective drugs, which accounts for 40% (N = 120) of these isolates. The other 60% in this group were XDR strains (N = 72). Consequently, the average number of effective anti-tuberculosis drugs for MDR-TB treatment was lower for Russian isolates (3 vs. 7). Furthermore, a notable percentage (9%) of isolates resistant to kanamycin harboured mutations in the whiB7 locus, which was not detected by molecular tests targeting common mutations in the rrs and eis loci. We found that 98.2% and 45.9% of MDR isolates from Moscow and Taiwan, respectively, were resistant to streptomycin. Molecular tests for detecting resistance to drugs other than rifampicin, isoniazid, fluoroquinolones, and second-line injectable drugs are needed for individualized therapy. The conventional MDR treatment schemes most probably fail in these cases due to the limited number of effective drugs.

Keywords: Drug-resistant Mycobacterium tuberculosis; Kanamycin; Tuberculosis; whiB7.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antitubercular Agents / pharmacology
  • Antitubercular Agents / therapeutic use
  • Bacterial Proteins / genetics*
  • Drug Resistance, Multiple, Bacterial / genetics*
  • Extensively Drug-Resistant Tuberculosis / drug therapy
  • Extensively Drug-Resistant Tuberculosis / epidemiology
  • Extensively Drug-Resistant Tuberculosis / microbiology
  • Genes, MDR / genetics
  • Genome, Bacterial / genetics
  • Humans
  • Microbial Sensitivity Tests*
  • Mutation
  • Mycobacterium tuberculosis / genetics*
  • Retrospective Studies
  • Russia / epidemiology
  • Taiwan / epidemiology
  • Tuberculosis, Multidrug-Resistant* / drug therapy
  • Tuberculosis, Multidrug-Resistant* / epidemiology
  • Tuberculosis, Multidrug-Resistant* / microbiology

Substances

  • Antitubercular Agents
  • Bacterial Proteins