Automated alignment method for coherence-controlled holographic microscope

J Biomed Opt. 2015 Nov;20(11):111215. doi: 10.1117/1.JBO.20.11.111215.

Abstract

A coherence-controlled holographic microscope (CCHM) was developed particularly for quantitative phase imaging and measurement of live cell dynamics, which is the proper subject of digital holographic microscopy (DHM). CCHM in low-coherence mode extends DHM in the study of living cells. However, this advantage is compensated by sensitivity of the system to easily become misaligned, which is a serious hindrance to wanted performance. Therefore, it became clear that introduction of a self-correcting system is inevitable. Accordingly, we had to devise a theory of a suitable control and design an automated alignment system for CCHM. The modulus of the reconstructed holographic signal was identified as a significant variable for guiding the alignment procedures. From this, we derived the original basic realignment three-dimensional algorithm, which encompasses a unique set of procedures for automated alignment that contains processes for initial and advanced alignment as well as long-term maintenance of microscope tuning. All of these procedures were applied to a functioning microscope and the tested processes were successfully validated. Finally, in such a way, CCHM is enabled to substantially contribute to study of biology, particularly of cancer cells in vitro.

Keywords: holographic microscopy.