Restoration of miRNA-149 Expression by TmPyP4 Induced Unfolding of Quadruplex within Its Precursor

Biochemistry. 2019 Feb 12;58(6):514-525. doi: 10.1021/acs.biochem.8b00880. Epub 2019 Jan 9.

Abstract

Noncoding RNAs are functional RNA molecules that get transcribed from DNA but are not translated into proteins; yet, they can regulate gene expression at transcriptional and post-transcriptional levels. Secondary structures present within these RNAs play a major role in determining their nature of function. In the case of miRNAs, the precursor miRNA have a hairpin stem loop structure which is required for Dicer recognition and further maturation. Alternately, it might assume a G-quadruplex structure. The transition from hairpin to G-quadruplex depends upon the nucleotide sequence as well as the cellular microenvironment, and this might affect the miRNA maturation and other downstream activity. Formation of the G-quadruplex within precursor miRNA-149 has been shown to inhibit Dicer processing activity followed by suppression of miRNA-149 maturation in cancer cells. In this report, we show that suppression of cell proliferation by the upregulated miRNA-149 could be rescued by unfolding the G-quadruplex present in pre-miRNA-149 by TmPyP4 (Porphyrin) treatment. Using UV-visible spectroscopy, circular dichroism, and isothermal titration calorimetry, we observed that TmPyP4 binds strongly to G-quadruplex and unfolds it, which was further verified by NMR spectroscopy. In cellulo, qRT-PCR measurements of miRNA-149 in MCF-7 breast cancer cells showed concentration dependent enhancement of mature miRNA-149 upon treatment of TmPyP4. As a consequence of enhanced miRNA-149 activity, we also observe the reduction in miRNA-149 target protein ZBTB2 that eventually leads to reduced cell proliferation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Proliferation
  • G-Quadruplexes / drug effects*
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • MCF-7 Cells
  • MicroRNAs / chemistry
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Nucleic Acid Conformation / drug effects*
  • Photosensitizing Agents / pharmacology
  • Porphyrins / pharmacology*
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Tumor Stem Cell Assay

Substances

  • MIRN149 microRNA, human
  • MicroRNAs
  • Photosensitizing Agents
  • Porphyrins
  • Repressor Proteins
  • ZBTB2 protein, human
  • tetra(4-N-methylpyridyl)porphine