Rapid increases in soil pH solubilise organic matter, dramatically increase denitrification potential and strongly stimulate microorganisms from the Firmicutes phylum

PeerJ. 2018 Dec 12:6:e6090. doi: 10.7717/peerj.6090. eCollection 2018.

Abstract

Rapid and transient changes in pH frequently occur in soil, impacting dissolved organic matter (DOM) and other chemical attributes such as redox and oxygen conditions. Although we have detailed knowledge on microbial adaptation to long-term pH changes, little is known about the response of soil microbial communities to rapid pH change, nor how excess DOM might affect key aspects of microbial N processing. We used potassium hydroxide (KOH) to induce a range of soil pH changes likely to be observed after livestock urine or urea fertilizer application to soil. We also focus on nitrate reductive processes by incubating microcosms under anaerobic conditions for up to 48 h. Soil pH was elevated from 4.7 to 6.7, 8.3 or 8.8, and up to 240-fold higher DOM was mobilized by KOH compared to the controls. This increased microbial metabolism but there was no correlation between DOM concentrations and CO2 respiration nor N-metabolism rates. Microbial communities became dominated by Firmicutes bacteria within 16 h, while few changes were observed in the fungal communities. Changes in N-biogeochemistry were rapid and denitrification enzyme activity (DEA) increased up to 25-fold with the highest rates occurring in microcosms at pH 8.3 that had been incubated for 24-hour prior to measuring DEA. Nitrous oxide reductase was inactive in the pH 4.7 controls but at pH 8.3 the reduction rates exceeded 3,000 ng N2-N g-1 h-1 in the presence of native DOM. Evidence for dissimilatory nitrate reduction to ammonium and/or organic matter mineralisation was observed with ammonium increasing to concentrations up to 10 times the original native soil concentrations while significant concentrations of nitrate were utilised. Pure isolates from the microcosms were dominated by Bacillus spp. and exhibited varying nitrate reductive potential.

Keywords: Bacillus; Clostridia; Denitrification; Denitrifying bacterial isolates; KOH; N2O emissions; Silt-loam soil.

Grants and funding

This work was supported using internal funding from The New Zealand Institute for Plant and Food Research, project number P/442046. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.