A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress

Exp Eye Res. 2019 Mar:180:92-101. doi: 10.1016/j.exer.2018.12.011. Epub 2018 Dec 19.

Abstract

The Retinal Pigment Epithelium (RPE) is a monolayer of cells located above the choroid. It mediates human visual cycle and nourishes photoreceptors. Hypoxia-induced oxidative stress to RPE is a vital cause of retinal degeneration such as the Age-related Macular Degeneration. Most of these retinal diseases are irreversible with no efficient treatment, therefore protecting RPE cells from hypoxia stress is an important way to prevent or slow down the progression of retinal degeneration. Betulinic acid (BA) and betulin (BE) are pentacyclic triterpenoids with anti-oxidative property, but little is known about their effect on RPE cells. We investigated the protective effect of BA, BE and their derivatives against cobalt chloride-induced hypoxia stress in RPE cells. Human ARPE-19 cells were exposed to BA, BE and their eighteen derivatives (named as H3H20) that we customized through replacing moieties at C3 and C28 positions. We found that cobalt chloride reduced cell viability, increased Reactive Oxygen Species (ROS) production as well as induced apoptosis and necrosis in ARPE-19 cells. Interestingly, the pretreatment of 3-O-acetyl-glycyl- 28-O-glycyl-betulinic acid effectively protected cells from acute hypoxia stress induced by cobalt chloride. Our immunoblotting results suggested that this derivative attenuated the cobalt chloride-induced activation of Akt, Erk and JNK pathways. All findings were further validated in human primary RPE cells. In summary, this BA derivate has protective effect against the acute hypoxic stress in human RPE cells and may be developed into a candidate agent effective in the prevention of prevalent retinal diseases.

Keywords: Betulinic acid; Cobalt chloride; Hypoxic stress; Retinal Pigment Epithelium; Signaling pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Disease
  • Adult
  • Aged
  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Antimutagenic Agents / toxicity
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects
  • Betulinic Acid
  • Blotting, Western
  • Cell Line
  • Cobalt / toxicity
  • Cytoprotection
  • Humans
  • Hypoxia / metabolism
  • Hypoxia / prevention & control*
  • Middle Aged
  • Oxidative Stress / drug effects*
  • Pentacyclic Triterpenes
  • Reactive Oxygen Species / metabolism
  • Retinal Pigment Epithelium / drug effects*
  • Retinal Pigment Epithelium / metabolism
  • Triterpenes / pharmacology*

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Antimutagenic Agents
  • Antineoplastic Agents, Phytogenic
  • Pentacyclic Triterpenes
  • Reactive Oxygen Species
  • Triterpenes
  • Cobalt
  • betulin
  • cobaltous chloride
  • Betulinic Acid