Preparation of High-Performance Carbon Fiber-Reinforced Epoxy Composites by Compression Resin Transfer Molding

Materials (Basel). 2018 Dec 20;12(1):13. doi: 10.3390/ma12010013.

Abstract

To satisfy the light weight requirements of vehicles owing to the aggravation of environmental pollution, carbon-fiber (CF)-reinforced epoxy composites have been chosen as a substitute for traditional metal counterparts. Since the current processing methods such as resin transfer molding (RTM) and compression molding (CM) have many limitations, an integrated and optimal molding method needs to be developed. Herein, we prepared high-performance composites by an optimized molding method, namely compression resin transfer molding (CRTM), which combines the traditional RTM and CM selectively and comprehensively. Differential scanning calorimetry (DSC) and rotational rheometry were performed to optimize the molding parameters of CRTM. In addition, metallurgical microscopy test and mechanical tests were performed to evaluate the applicability of CRTM. The experimental results showed that the composites prepared by CRTM displayed superior mechanical properties than those of the composites prepared by RTM and CM. The composite prepared by CRTM showed up to 42.9%, 41.2%, 77.3%, and 5.3% increases in tensile strength, bending strength, interlaminar shear strength, and volume fraction, respectively, of the composites prepared by RTM. Meanwhile, the porosity decreased by 45.2 %.

Keywords: CM; CRTM; RTM; carbon-fiber reinforced epoxy composite; lightweight.