Real-time ALT and LDH activities determined in viable precision-cut mouse liver slices using hyperpolarized [1-13 C]pyruvate-Implications for studies on biopsied liver tissues

NMR Biomed. 2019 Feb;32(2):e4043. doi: 10.1002/nbm.4043. Epub 2018 Dec 21.

Abstract

Precision-cut liver slices (PCLS) are widely used in liver research as they provide a liver model with all liver cell types in their natural architecture. The purpose of this study was to demonstrate the use of PCLS for hyperpolarized metabolic investigation in a mouse model, for potential future application in liver biopsy cores. Fresh normal liver was harvested from six mice. 500 μm PCLS were prepared and placed in a 10 mm NMR tube in an NMR spectrometer and perfused continuously. 31 P spectra were acquired to evaluate the presence of adenosine triphosphate (ATP) and validate viability in all samples. Hyperpolarized [1-13 C]pyruvate was flushed into the NMR tube in the spectrometer. Consecutive 13 C NMR spectra were acquired immediately after the injection using both non-selective (five injections, two livers) and selective RF excitation (six injections, three livers). The 31 P spectra showed the characteristic signals of ATP, confirming the viability of the PCLS for more than 2.5 h in the spectrometer. After each of the [1-13 C]pyruvate injections, both [1-13 C]lactate and [1-13 C]alanine signals were detected. Selective RF excitation aimed at both [1-13 C]lactate and [1-13 C]alanine enabled better visualization and quantification of the metabolic activity. Using this acquisition approach only the newly formed metabolites are observed upon excitation, and their intensities relative to those of hyperpolarized pyruvate enable quantification of metabolite production rates. This rate of lactate and alanine production appeared to be constant throughout the measurement time, with alanine production about 2.3 times higher than lactate. In summary, the viability of PCLS in an NMR spectrometer was demonstrated and hyperpolarized [1-13 C]pyruvate metabolism was recorded. This study opens up the possibility of evaluating alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities in human liver biopsies, while preserving the tissue architecture and viability. In healthy, well-perfused liver slices the ratio of ALT to LDH activity is about 2.3.

Keywords: 31P and 13C-NMR; alanine; dissolution dynamic nuclear polarization; lactate; liver; metabolism; perfusion; pyruvate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alanine Transaminase / metabolism*
  • Animals
  • Biopsy
  • Carbon Isotopes / metabolism*
  • L-Lactate Dehydrogenase / metabolism*
  • Liver / enzymology*
  • Liver / pathology*
  • Male
  • Metabolome
  • Mice, Inbred ICR
  • Pyruvic Acid / metabolism*

Substances

  • Carbon Isotopes
  • Pyruvic Acid
  • L-Lactate Dehydrogenase
  • Alanine Transaminase
  • Carbon-13