Mechanical Behavior of Natural Fiber-Based Bi-Directional Corrugated Lattice Sandwich Structure

Materials (Basel). 2018 Dec 18;11(12):2578. doi: 10.3390/ma11122578.

Abstract

In this study, 11 kinds of composite material were prepared, and the compression behavior of a bi-directional corrugated lattice sandwich structure prepared using jute fiber and epoxy resin was explored. The factors affecting the mechanical behavior of single and double-layer structures were studied separately. The results shows that the fiber angle, length-to-diameter ratio of the struts, and the type of fiber cloth have the most significant influence on the mechanical behavior of the single-layer lattice structure when preparing the core layer. When the fiber angle of the core layer jute/epoxy prepreg is (90/90) the compressive strength and Young's modulus are 83.3% and 60.0% higher than the fiber angle of (45/45). The configuration of the core and the presence of the intermediate support plate of the double-layer structure have a large influence on the compression performance of the two-layer structure. After the configuration was optimized, the compressive strength and Young's modulus were increased by 40.0% and 28.9%, respectively. The presence of the intermediate support plate increases the compressive strength, and Young's modulus of the double-layer structure by 75.0% and 26.6%, respectively. The experimental failure is dominated by the buckling, fracture, and delamination of the core struts.

Keywords: Bi-directional corrugation; Jute fiber; Sandwich structure; composite material.