Enhanced luminescence from InGaN/GaN nano-disk in a wire array caused by surface potential modulation during wet treatment

Nanotechnology. 2019 Mar 8;30(10):104001. doi: 10.1088/1361-6528/aaf8de. Epub 2018 Dec 17.

Abstract

Here we have demonstrated the profound impact of surface potential on the luminescence of an array of InGaN/GaN nano-disk in a wire heterostructure. The change in surface potential is brought about by a combination of dry and successive wet-processing treatments. The photoluminescence (PL) properties are determined as a function of size and height of this array of nano-disks. The observed characteristics are coherently explained by considering a change in quantum confinement induced by the change in surface potential, quantum-confined Stark effect, exciton binding energy and strain relaxation for varying surface potential. The change in hole bound state energy due to parabolic potential well near the side-wall is found to be the dominating factor. The PL peak position, full width at half-maximum, strain relaxation and integrated PL intensity are studied as a function of incident power and temperature. The devices demonstrate higher integrated PL intensity and slope efficiency.