Ambient Degradation-Induced Spin Paramagnetism in Phosphorene

Small. 2019 Jan;15(3):e1804386. doi: 10.1002/smll.201804386. Epub 2018 Dec 17.

Abstract

The sizeable direct bandgap, high mobility, and long spin lifetimes at room temperature offer black phosphorus (BP) potential applications in spin-based semiconductor devices. Toward these applications, a critical step is creating a magnetic response in BP, which is arousing much interest. It is reported here that ambient degradation of BP, which is immediate and inevitable and greatly changes the semiconducting properties, creates magnetic moments, and any degree of degradation leads to notable paramagnetism. Its Landau factor g measured is ≈1.995, revealing that the magnetization mainly results from spin rather than orbital moments. Such magnetism most likely results from the unsaturated phosphorus in the vacancies which are stabilized by O adatoms. It can be tuned by changing any one of the ambient factors of ambient temperature, humidity, and light intensity, and can be stabilized by exposing BP in argon. The findings highlight the importance of evaluating the effect of ambient degradation-induced magnetism on BP's spin-based devices. The work seems an essential milestone toward the forthcoming research upsurge on BP's magnetism.

Keywords: ambient degradation; magnetism; phosphorene.