Clinically applicable delineation of the pallidal sensorimotor region in patients with advanced Parkinson's disease: study of probabilistic and deterministic tractography

J Neurosurg. 2018 Dec 14;131(5):1520-1531. doi: 10.3171/2018.7.JNS18541.

Abstract

Objective: Deep brain stimulation (DBS) is an effective procedure in improving motor symptoms for patients with advanced Parkinson's disease (PD) through the use of high-frequency stimulation. Although one of the most commonly used target sites for DBS, sensorimotor regions of the globus pallidus interna (GPi) have yet to be thoroughly described with advanced neuroimaging analysis in vivo for human subjects. Furthermore, many imaging studies to date have been performed in a research setting and bring into question the feasibility of their applications in a clinical setting, such as for surgical planning. This study compares two different tractography methods applied to clinically feasible acquisition sequences in identifying sensorimotor regions of the GPi and the subthalamic nucleus (STN) in patients with advanced PD selected to undergo DBS.

Methods: Seven patients with refractory PD selected for DBS were examined by MRI. Diffusion images were acquired with an average acquisition time of 15 minutes. Probabilistic and deterministic tractography methods were applied to each diffusion-weighted data set using FSL and MRtrix, respectively. Fiber assignment was performed using combined sensorimotor areas as initiation seeds and the STN and GPi, separately, as inclusion masks. Corticospinal tracts were excluded by setting the cerebral peduncles as exclusion masks. Variability between proposed techniques was shown using center of gravity (CoG) coordinates.

Results: Deterministic and probabilistic corticopallidal and corticosubthalamic pathways were successfully reconstructed for all subjects across all target sites (bilaterally). Both techniques displayed large connections between the sensorimotor cortex with the posterolateral aspect of the ipsilateral GPi and the posterosuperolateral aspect of the ipsilateral STN. The average variability was 2.67 mm, with the probabilistic method identifying the CoG consistently more posterior and more lateral than the deterministic method.

Conclusions: Successful delineation of the sensorimotor regions in both the GPi and STN is achievable within a clinically reasonable timeframe. The techniques described in this paper may enhance presurgical planning with increased accuracy and improvement of patient outcomes in patients undergoing DBS. The variability found between tracking techniques warrants the use of the probabilistic tractography method over the deterministic method for presurgical planning. Probabilistic tractography was found to have an advantage over deterministic tractography in its sensitivity, in accurately describing previously described tracts, and in its ability to detect a larger number of fibers.

Keywords: deep brain stimulation; diffusion-weighted imaging; fronto-striato-subthalamic-pallidal network; functional neurosurgery; probabilistic tractography; sensorimotor regions of the globus pallidus interna.