The utility of transthoracic echocardiographic measures of right ventricular systolic function in a lung resection cohort

Echo Res Pract. 2019 Mar 1;6(1):7-15. doi: 10.1530/ERP-18-0067.

Abstract

Right ventricular (RV) dysfunction occurs following lung resection and is associated with post-operative complications and long-term functional morbidity. Accurate peri-operative assessment of RV function would have utility in this population. The difficulties of transthoracic echocardiographic (TTE) assessment of RV function may be compounded following lung resection surgery, and no parameters have been validated in this patient group. This study compares conventional TTE methods for assessing RV systolic function to a reference method in a lung resection population. Right ventricular index of myocardial performance (RIMP), fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE) and S' wave velocity at the tricuspid annulus (S'), along with speckle tracked global and free wall longitudinal strain (RV-GPLS and RV-FWPLS respectively) are compared with RV ejection fraction obtained by cardiovascular magnetic resonance (RVEFCMR). Twenty-seven patients undergoing lung resection underwent contemporaneous CMR and TTE imaging; pre-operatively, on post-operative day two and at 2 months. Ability of each of the parameters to predict RV dysfunction (RVEFCMR <45%) was assessed using the area under the receiver operating characteristic curve (AUROCC). RIMP, FAC and S' demonstrated no predictive value for poor RV function (AUROCC <0.61, P > 0.05). TAPSE performed marginally better with an AUROCC of 0.65 (P = 0.04). RV-GPLS and RV-FWPLS demonstrated good predictive ability with AUROCC's of 0.74 and 0.76 respectively (P < 0.01 for both). This study demonstrates that the conventional TTE parameters of RV systolic function are inadequate following lung resection. Longitudinal strain performs better and offers some ability to determine poor RV function in this challenging population.

Keywords: cardiovascular magnetic resonance imaging; lung resection; right ventricle; speckle tracked strain.