Non-endogenous ketocarotenoid accumulation in engineered Synechocystis sp. PCC 6803

Physiol Plant. 2019 May;166(1):403-412. doi: 10.1111/ppl.12900. Epub 2019 Jan 20.

Abstract

The cyanobacterium Synechocystis sp. PCC 6803 is a model species commonly employed for biotechnological applications. It is naturally able to accumulate zeaxanthin (Zea) and echinenone (Ech), but not astaxanthin (Asx), which is the highest value carotenoid produced by microalgae, with a wide range of applications in pharmaceutical, cosmetics, food and feed industries. With the aim of finding an alternative and sustainable biological source for the production of Asx and other valuable hydroxylated and ketolated intermediates, the carotenoid biosynthetic pathway of Synechocystis sp. PCC 6803 has been engineered by introducing the 4,4' β-carotene oxygenase (CrtW) and 3,3' β-carotene hydroxylase (CrtZ) genes from Brevundimonas sp. SD-212 under the control of a temperature-inducible promoter. The expression of exogenous CrtZ led to an increased accumulation of Zea at the expense of Ech, while the expression of exogenous CrtW promoted the production of non-endogenous canthaxanthin and an increase in the Ech content with a concomitant strong reduction of β-carotene (β-car). When both Brevundimonas sp. SD-212 genes were coexpressed, significant amounts of non-endogenous Asx were obtained accompanied by a strong decrease in β-car content. Asx accumulation was higher (approximately 50% of total carotenoids) when CrtZ was cloned upstream of CrtW, but still significant (approximately 30%) when the position of genes was inverted. Therefore, the engineered strains constitute a useful tool for investigating the ketocarotenoid biosynthetic pathway in cyanobacteria and an excellent starting point for further optimisation and industrial exploitation of these organisms for the production of added-value compounds.

MeSH terms

  • Bacterial Proteins / metabolism
  • Carotenoids / metabolism
  • Mixed Function Oxygenases / metabolism
  • Synechocystis / metabolism*
  • Zeaxanthins / metabolism

Substances

  • Bacterial Proteins
  • Zeaxanthins
  • Carotenoids
  • Mixed Function Oxygenases
  • beta-carotene hydroxylase