Conformational and solution dynamics of hemoglobin (Hb) in presence of a cleavable gemini surfactant: Insights from spectroscopy, atomic force microscopy, molecular docking and density functional theory

J Colloid Interface Sci. 2019 Mar 7:538:489-498. doi: 10.1016/j.jcis.2018.12.008. Epub 2018 Dec 3.

Abstract

Herein, we have explored the conformational alterations of hemoglobin (Hb) in presence of a cleavable gemini surfactant (C16-C4O2-C16). The concerned surfactant was found to induce significant structural perturbations in Hb. UV-vis spectroscopy, steady-state/time-resolved fluorescence, and other utilized techniques have authenticated the complexation of Hb with the gemini surfactant. CD has demonstrated the alterations in secondary structural elements (α-helicity, β-sheet, β-turn, and random coil) of Hb upon C16-C4O2-C16 addition. Atomic force microscopy (AFM) has revealed the existence of unique star-shaped gemini surfactant microstructures aligned to Hb in a necklace pattern. The 1H NMR peak broadening and lower delta values hint at the binding of the concerned gemini surfactant to Hb. Molecular docking and DFT calculations have further substantiated the Hb-gemini complex formation and the involvement of electrostatic/hydrophobic forces therein. In future, these results might pave-the-way to construct self-assembled, sustainable, and green surfactant-protein mixtures for their end-use in industrial, engineering, biomedical, drug delivery, gene transfection, and other relevant excipient formulations.

Keywords: (1)H NMR; AFM; DFT; Docking; Green gemini surfactant; Hb.

MeSH terms

  • Animals
  • Density Functional Theory*
  • Hemoglobins / chemistry*
  • Microscopy, Atomic Force
  • Molecular Docking Simulation*
  • Protein Conformation
  • Solutions
  • Spectrometry, Fluorescence
  • Spectrophotometry, Ultraviolet
  • Surface-Active Agents / chemistry*
  • Swine
  • Thermodynamics*

Substances

  • Hemoglobins
  • Solutions
  • Surface-Active Agents