RNAi-mediated knockdown of the Rhau helicase preferentially depletes proteins with a Guanine-quadruplex motif in the 5'-UTR of their mRNA

Biochem Biophys Res Commun. 2019 Jan 15;508(3):756-761. doi: 10.1016/j.bbrc.2018.11.186. Epub 2018 Dec 6.

Abstract

Guanine-quadruplex (G-quadruplex) structures in mRNAs have been shown to modulate gene expression. However, the overall biological relevance of this process is under debate, as cellular helicases unwind G-quadruplex structures. The helicase Rhau (encoded by the DHX36 gene) was reported to be the major source of RNA G-quadruplex resolving activity in lysates of human cells. In the current study, we depleted Rhau by RNAi-mediated silencing and analyzed the effect on proteins whose mRNAs harbor a G-quadruplex motif in their 5'-UTRs. A targeted investigation of the proto-oncogenes Bcl-2 and NRAS, which are well-known examples for the translational repression of G-quadruplex structures, did not reveal effects caused by Rhau silencing. We therefore carried out a global analysis of changes in protein levels by label-free quantification using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Following Rhau knockdown, of all the identified proteins, only 1.9% were significantly downregulated to at least 70%. According to a bioinformatic analysis with the QGRS mapper, 33% of the downregulated proteins were predicted to harbor a G-quadruplex motif in the 5'-UTR of their respective mRNAs, compared to only 11% in the complete dataset. This indicates that in an unexpectedly small set of genes, in which G-quadruplex motifs are unusually common in the 5'-UTR of their mRNAs, Rhau helicase is responsible for the regulation of their expression.

Keywords: G-quadruplex; Orbitrap mass spectrometry; RNA interference; Rhau helicase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5' Untranslated Regions / genetics*
  • Cell Survival
  • DEAD-box RNA Helicases / genetics*
  • Down-Regulation / genetics
  • G-Quadruplexes*
  • GTP Phosphohydrolases / metabolism
  • Gene Knockdown Techniques*
  • HEK293 Cells
  • Humans
  • Membrane Proteins / metabolism
  • Protein Biosynthesis
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • RNA Interference*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Small Interfering / metabolism

Substances

  • 5' Untranslated Regions
  • Membrane Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • RNA, Messenger
  • RNA, Small Interfering
  • DHX36 protein, human
  • GTP Phosphohydrolases
  • NRAS protein, human
  • DEAD-box RNA Helicases