Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments

Neuroimage Clin. 2019:21:101620. doi: 10.1016/j.nicl.2018.101620. Epub 2018 Dec 3.

Abstract

Background: Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability, and may be beneficial for motor recovery after stroke. However, the neuroplasticity effects of rTMS have not been thoroughly investigated in the early stage after stroke.

Objective: To comprehensively assess the effects of high- and low-frequency repetitive transcranial magnetic stimulations on motor recovery in early stroke patients, using a randomized controlled trial based on clinical, neurophysiological and functional imaging assessments.

Methods: Sixty hospitalized, first-ever ischemic stroke patients (within 2 weeks after stroke) with motor deficits were randomly allocated to receive, in addition to standard physical therapy, five consecutive sessions of either: (1) High-frequency (HF) rTMS at 10 Hz over the ipsilesional primary motor cortex (M1); (2) Low-frequency (LF) rTMS at 1 Hz over the contralesional M1; (3) sham rTMS. The primary outcome measure was a motor impairment score (Upper Extremity Fugl-Meyer) evaluated at baseline, after rTMS intervention, and at 3-month follow-up. Cortical excitability and functional magnetic resonance imaging (fMRI) data were obtained within 24 h before and after rTMS intervention. Analyses of variance were conducted to compare the recovery effects among the three rTMS groups, assessed using clinical, neurophysiological and fMRI tests.

Results: Motor improvement was significantly larger in the two rTMS groups than in the control group. The HF-rTMS group showed significantly increased cortical excitability and motor-evoked fMRI activation in ipsilesional motor areas, whereas the LF-rTMS group had significantly decreased cortical excitability and motor-evoked fMRI activation in contralesional motor areas. Activity in ipsilesional motor cortex significantly correlated with motor function, after intervention as well as at 3-month follow-up.

Conclusion: HF- and LF-rTMS can both improve motor function by modulating motor cortical activation in the early phase of stroke.

Keywords: Interhemispheric inhibition; Motor recovery; Neuroplasticity; Stroke; Transcranial magnetic stimulation; fMRI.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Brain / physiopathology*
  • Brain Ischemia / complications
  • Brain Ischemia / physiopathology
  • Brain Mapping
  • Combined Modality Therapy
  • Cortical Excitability
  • Evoked Potentials, Motor
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Motor Activity*
  • Physical Therapy Modalities
  • Recovery of Function*
  • Stroke / complications
  • Stroke / physiopathology*
  • Stroke Rehabilitation / methods*
  • Transcranial Magnetic Stimulation*
  • Treatment Outcome