Temperature- and Pressure-induced Structural Transition of Binary Clathrate Hydrates

Chemphyschem. 2019 Feb 4;20(3):429-435. doi: 10.1002/cphc.201800943. Epub 2019 Jan 4.

Abstract

We discover new structure II (sII) hydrate forming agents of two C4 H8 O molecules (2-methyl-2-propen-1-ol and 2-butanone) and report the abnormal structural transition of binary C4 H8 O+CH4 hydrates between structure I (sI) and sII with varying temperature and pressure conditions. In both (2-methyl-2-propen-1-ol+CH4 ) and (2-butanone+CH4 ) systems, the phase boundary of the two different hydrate phases (sI and sII) exists at the slope change of the phase-equilibrium curve in the semi-logarithmic plots. We confirm the crystal structures of two hydrates synthesized at low (278 K and 6 MPa) and high (286 K and 15 MPa) temperature and pressure conditions by using high-resolution powder diffraction and Raman spectroscopy. 2-Methyl-2-propen-1-ol and 2-butanone can occupy the large cages of sII hydrate at low temperature and pressure conditions; however, they are excluded from the hydrate phase at high temperature and pressure conditions, resulting in the formation of pure sI CH4 hydrate.

Keywords: clathrate hydrates; host-guest chemistry; hydrate structure analysis; phase equilibria; structural transition.

Publication types

  • Research Support, Non-U.S. Gov't