Nitrogen input by bamboos in neotropical forest: a new perspective

PeerJ. 2018 Nov 29:6:e6024. doi: 10.7717/peerj.6024. eCollection 2018.

Abstract

Background: Nitrogen (N) is an important macronutrient that controls the productivity of ecosystems and biological nitrogen fixation (BNF) is a major source of N in terrestrial systems, particularly tropical forests. Bamboo dominates theses forests, but our knowledge regarding the role of bamboo in ecosystem functioning remains in its infancy. We investigated the importance of a native bamboo species to the N cycle of a Neotropical forest.

Methods: We selected 100 sample units (100 m2 each) in a pristine montane Atlantic Forest, in Brazil. We counted all the clumps and live culms of Merostachys neesii bamboo and calculated the specific and total leaf area, as well as litter production and respective N content. Potential N input was estimated based on available data on BNF rates for the same bamboo species, whose N input was then contextualized using information on N cycling components in the study area.

Results: With 4,000 live culms ha-1, the native bamboo may contribute up to 11.7 kg N ha-1 during summer (January to March) and 19.6 kg N ha-1 in winter (July to September). When extrapolated for annual values, M. neesii could contribute more than 60 kg N ha-1y-1.

Discussion: The bamboo species' contribution to N input may be due to its abundance (habitat availability for microbial colonization) and the composition of the free-living N fixer community on its leaves (demonstrated in previous studies). Although some N is lost during decomposition, this input could mitigate the N deficit in the Atlantic Forest studied by at least 27%. Our findings suggest that M. neesii closely regulates N input and may better explain the high diversity and carbon stocks in the area. This is the first time that a study has investigated BNF using free-living N fixers on the phyllosphere of bamboo.

Keywords: Atlantic forest; Free-living biological nitrogen fixation; Merostachys neesii; N cycling; Neotropical bamboo.

Grants and funding

This research was supported by the Brazilian National Research Council/CNPq (PELD 403710/2012-0); the British Natural Environment Research Council/NERC and the São Paulo Research Foundation/FAPESP within the BIOTA Program (2012/51509-8 and 2012/51872-5); by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) via Ph.D. fellowship to Maíra C.G. Padgurschi. The meteorological data were provided by the University of São Paulo with the support of FAPESP projects: 2015/50682-6; 2012/51872-5; 2012/50343-9; 2008/50285-3; 2007/57465-4; 2003 /12595-7. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.