Electrodeposition⁻Assisted Assembled Multilayer Films of Gold Nanoparticles and Glucose Oxidase onto Polypyrrole-Reduced Graphene Oxide Matrix and Their Electrocatalytic Activity toward Glucose

Nanomaterials (Basel). 2018 Dec 1;8(12):993. doi: 10.3390/nano8120993.

Abstract

The study reports a facile and eco-friendly approach for nanomaterial synthesis and enzyme immobilization. A corresponding glucose biosensor was fabricated by immobilizing the gold nanoparticles (AuNPs) and glucose oxidase (GOD) multilayer films onto the polypyrrole (PPy)/reduced graphene oxide (RGO) modified glassy carbon electrode (GCE) via the electrodeposition and self-assembly. PPy and graphene oxide were first coated on the surface of a bare GCE by the electrodeposition. Then, AuNPs and GOD were alternately immobilized onto PPy-RGO/GCE electrode using the electrodeposition of AuNPs and self-assembly of GOD to obtain AuNPs-GOD multilayer films. The resulting PPy-RGO-(AuNPs-GOD)n/GCE biosensors were used to characterize and assess their electrocatalytic activity toward glucose using cyclic voltammetry and amperometry. The response current increased with the increased number of AuNPs-GOD layers, and the biosensor based on four layers of AuNPs-GOD showed the best performance. The PPy-RGO-(AuNPs-GOD)₄/GCE electrode can detect glucose in a linear range from 0.2 mM to 8 mM with a good sensitivity of 0.89 μA/mM, and a detection limit of 5.6 μM (S/N = 3). This study presents a promising eco-friendly biosensor platform with advantages of electrodeposition and self-assembly, and would be helpful for the future design of more complex electrochemical detection systems.

Keywords: biosensor; electrodeposition; gold nanoparticles; graphene; polypyrrole; self-assembly.