Effective removal of inorganic mercury and methylmercury from aqueous solution using novel thiol-functionalized graphene oxide/Fe-Mn composite

J Hazard Mater. 2019 Mar 15:366:130-139. doi: 10.1016/j.jhazmat.2018.11.074. Epub 2018 Nov 18.

Abstract

A novel thiol-functionalized graphene oxide/Fe-Mn (SGO/Fe-Mn) was investigated for aqueous Hg2+ and CH3Hg+ removal. Mercury were removed mainly through ligand exchange and surface complexation with surface active sites (i.e., -SH, OH, OCO, CC, SiO, and ππ bond). SH had the strongest binding ability with mercury, forming sulfur-containing organic matter or polymers with Hg2+, and sulfur-containing organometallic compounds or thiolate-like species with CH3Hg+. The BET sorption isotherm model well simulated the sorption isotherm data of Hg2+ (R2=0.995, qm=233.17 mg/g) and CH3Hg+ (R2=0.997, qm=36.69 mg/g), indicating a multilayer adsorption process. The mercury uptake was promoted with the increase of 3-MPTS content, adsorbent dosage, and pH (<5.5), whereas the uptake was inhibited by high pH (>5.5) and high concentrations of humic acid and electrolytes. SGO/Fe-Mn demonstrated high mercury uptake in simulated surface water/groundwater and in the presence of Pb, Cu, Ni, Sb, Cd and Zn. The mercury-laden SGO/Fe-Mn can be successfully regenerated and reused for three times with 98.1% and 67.0% of original Hg2+ and CH3Hg+ sorption capacity when 5% thiourea + 2 M KI was used as the desorbing agent. This study demonstrates potential and viability of SGO/Fe-Mn for mercury remediation.

Keywords: Mercury; Methylmercury; Remediation; Sorption; Thiol-functionalized graphene oxide/Fe-Mn.

Publication types

  • Research Support, Non-U.S. Gov't