Multichannel vectorial holographic display and encryption

Light Sci Appl. 2018 Nov 28:7:95. doi: 10.1038/s41377-018-0091-0. eCollection 2018.

Abstract

Since its invention, holography has emerged as a powerful tool to fully reconstruct the wavefronts of light including all the fundamental properties (amplitude, phase, polarization, wave vector, and frequency). For exploring the full capability for information storage/display and enhancing the encryption security of metasurface holograms, smart multiplexing techniques together with suitable metasurface designs are highly demanded. Here, we integrate multiple polarization manipulation channels for various spatial phase profiles into a single birefringent vectorial hologram by completely avoiding unwanted cross-talk. Multiple independent target phase profiles with quantified phase relations that can process significantly different information in different polarization states are realized within a single metasurface. For our metasurface holograms, we demonstrate high fidelity, large efficiency, broadband operation, and a total of twelve polarization channels. Such multichannel polarization multiplexing can be used for dynamic vectorial holographic display and can provide triple protection for optical security. The concept is appealing for applications of arbitrary spin to angular momentum conversion and various phase modulation/beam shaping elements.