High-Pressure Synthesis, Crystal Structure, Chemical Bonding, and Ferroelectricity of LiNbO3-Type LiSbO3

Inorg Chem. 2018 Dec 17;57(24):15462-15473. doi: 10.1021/acs.inorgchem.8b02767. Epub 2018 Dec 3.

Abstract

A polar LiNbO3 (LN)-type oxide LiSbO3 was synthesized by a high-temperature heat treatment under a pressure of 7.7 GPa and found to exhibit ferroelectricity. The crystal structural refinement using the data of synchrotron powder X-ray diffraction and neutron diffraction and the electronic structure calculation of LN-type LiSbO3 suggest a covalent-bonding character between Sb and O. When comparing the distortion of BO6 in LN-type ABO3, the distortions of SbO6 in LiSbO3 and SnO6 in ZnSnO3, which included a B cation with a d10 electronic configuration, were smaller than those of BO6 in LN-type oxides having the second-order Jahn-Teller active B cation, e.g., LiNbO3 and ZnTiO3. The temperature dependence of the lattice parameters, second harmonic generation, dielectric permittivity, and differential scanning calorimetry made it clear that a second-order ferroelectric-paraelectric phase transition occurs at a Curie temperature of Tc = 605 ± 10 K in LN-type LiSbO3. Further, first-principles density functional theory calculation suggested that perovskite-type LiSbO3 is less stable than LN-type LiSbO3 under even high pressure, and the ambient phase of LiSbO3 directly transforms to LN-type LiSbO3 under high pressure. The phase stability of LN-type LiSbO3 and the polar and ferroelectric properties are rationalized by the covalent bonding of Sb-O and the relatively weak Coulomb repulsion between Li+ and Sb5+.