Shavenbaby and Yorkie mediate Hippo signaling to protect adult stem cells from apoptosis

Nat Commun. 2018 Nov 30;9(1):5123. doi: 10.1038/s41467-018-07569-0.

Abstract

To compensate for accumulating damages and cell death, adult homeostasis (e.g., body fluids and secretion) requires organ regeneration, operated by long-lived stem cells. How stem cells can survive throughout the animal life remains poorly understood. Here we show that the transcription factor Shavenbaby (Svb, OvoL in vertebrates) is expressed in renal/nephric stem cells (RNSCs) of Drosophila and required for their maintenance during adulthood. As recently shown in embryos, Svb function in adult RNSCs further needs a post-translational processing mediated by the Polished rice (Pri) smORF peptides and impairing Svb function leads to RNSC apoptosis. We show that Svb interacts both genetically and physically with Yorkie (YAP/TAZ in vertebrates), a nuclear effector of the Hippo pathway, to activate the expression of the inhibitor of apoptosis DIAP1. These data therefore identify Svb as a nuclear effector in the Hippo pathway, critical for the survival of adult somatic stem cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult Stem Cells / metabolism*
  • Animals
  • Apoptosis / genetics
  • Apoptosis / physiology
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Drosophila
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • In Situ Nick-End Labeling
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Signal Transduction / genetics
  • Signal Transduction / physiology
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • YAP-Signaling Proteins

Substances

  • DNA-Binding Proteins
  • Drosophila Proteins
  • Intracellular Signaling Peptides and Proteins
  • Nuclear Proteins
  • Trans-Activators
  • Transcription Factors
  • YAP-Signaling Proteins
  • Yki protein, Drosophila
  • ovo protein, Drosophila
  • Protein Serine-Threonine Kinases
  • hpo protein, Drosophila