Computational Analysis Supports IL-17A as a Central Driver of Neutrophil Extracellular Trap-Mediated Injury in Liver Ischemia Reperfusion

J Immunol. 2019 Jan 1;202(1):268-277. doi: 10.4049/jimmunol.1800454. Epub 2018 Nov 30.

Abstract

Hepatic ischemia reperfusion (I/R) is a clinically relevant model of acute sterile inflammation leading to a reverberating, self-sustaining inflammatory response with resultant necrosis. We hypothesized that computerized dynamic network analysis (DyNA) of 20 inflammatory mediators could help dissect the sequence of post-I/R mediator interactions that induce injury. Although the majority of measured inflammatory mediators become elevated in the first 24 h, we predicted that only a few would be secreted early in the process and serve as organizational centers of downstream intermediator complexity. In support of this hypothesis, DyNA inferred a central organizing role for IL-17A during the first 3 h of reperfusion. After that, DyNA revealed connections among almost all the inflammatory mediators, representing an ongoing cytokine storm. Blocking IL-17A immediately after reperfusion disassembled the inflammatory networks and protected the liver from injury. Disassembly of the networks was not achieved if IL-17A blockage was delayed two or more hours postreperfusion. Network disassembly was accompanied by decrease in neutrophil infiltration and neutrophil extracellular trap (NET) formation. By contrast, administration of recombinant IL-17A increased neutrophil infiltration, NET formation, and liver necrosis. The administration of DNase, a NET inhibitor, significantly reduced hepatic damage despite prior administration of IL-17A, and DNase also disassembled the inflammatory networks. In vitro, IL-17A was a potent promoter of NET formation. Therefore, computational analysis identified IL-17A's early, central organizing role in the rapid evolution of a network of inflammatory mediators that induce neutrophil infiltration and NET formation responsible for hepatic damage after liver I/R.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibodies, Blocking / administration & dosage
  • Cells, Cultured
  • Computational Biology / methods*
  • Computer Simulation*
  • Deoxyribonucleases / metabolism
  • Disease Models, Animal
  • Extracellular Traps / immunology*
  • Humans
  • Inflammation Mediators / metabolism
  • Interleukin-17 / immunology
  • Interleukin-17 / metabolism*
  • Liver / pathology*
  • Liver / surgery
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Necrosis
  • Neutrophil Infiltration
  • Neutrophils / immunology*
  • Protein Interaction Maps
  • Reperfusion Injury / immunology*

Substances

  • Antibodies, Blocking
  • Inflammation Mediators
  • Interleukin-17
  • Deoxyribonucleases