Mapping complex polarization states of light on a solid

Opt Lett. 2018 Dec 1;43(23):5757-5760. doi: 10.1364/OL.43.005757.

Abstract

Polarization states of light, represented by different points on a Poincaré sphere, can be readily analyzed for a Gaussian beam by a combination of wave plates and polarizers. However, this method cannot be extended to higher-order Poincaré spheres and complex polarization patterns produced by coherent superpositions of vector vortex (VV) beams. We demonstrate the visualization of complex polarization patterns by imprinting them onto a solid surface in the form of periodic nano-gratings oriented parallel to the local structure of the electric field of light. We design unconventional surface structures by controlling the superposition of VV beams. Our method is of potential interest to the production of sub-wavelength nano-structures.