Comparative genomics of HORMA domain-containing proteins in prokaryotes and eukaryotes

Cell Cycle. 2018;17(23):2531-2546. doi: 10.1080/15384101.2018.1553402. Epub 2018 Dec 4.

Abstract

In eukaryotes, critical regulation of cell cycle is required to ensure the integrity of cell division. HORMA-containing proteins include various proteins that contain HORMA domain and play important role in the regulation of cell cycle in eukaryotes. Many types of HORMA-containing proteins are found in eukaryotes, but their role in prokaryotes has not been proven. Therefore, we conduct an extensive search in GenBank for HORMA-containing proteins in prokaryotes to compare HORMA domain structure and architecture across eukaryotes and prokaryotes. Strikingly, genome sequencing for many prokaryotic organisms reveals that HORMA domain is present in many bacterial genomes and only two archaeal genomes. We perform sequence alignment and phylogenetic analysis to trace the evolutionary link between HORMA domain in prokaryotes and eukaryotes. HORMA domain in prokaryotes appears to vary in sequence and architecture. Interestingly, seven bacterial HORMA-containing proteins and the two archaeal HORMA-containing proteins showed close relationships with eukaryotic HORMA-containing proteins. Additionally, we uncovered remarkable close relationships between HORMA-containing protein from Chlamydia trachomatis and eukaryotic MAD2 proteins. Our results provide insights into evolutionary relationships between prokaryotic and eukaryotic systems, which facilitate our understanding of the evolution of cell cycle regulation mechanisms.

Keywords: HORMA domain; cell cycle; evolution; phylogenetics; prokaryotes.