Intermediates of N-Heterocyclic Carbene (NHC) Dimerization Probed in the Gas Phase by Ion Mobility Mass Spectrometry: C-H⋅⋅⋅:C Hydrogen Bonding Versus Covalent Dimer Formation

Chemistry. 2019 Feb 18;25(10):2511-2518. doi: 10.1002/chem.201803641. Epub 2019 Jan 17.

Abstract

N-Heterocyclic carbenes (NHCs, :C) can interact with azolium salts (C-H+ ) by either forming a hydrogen-bonded aggregate (CHC+ ) or a covalent C-C bond (CCH+ ). In this study, the intramolecular NHC-azolium salt interactions of aromatic imidazolin-2-ylidenes and saturated imidazolidin-2-ylidenes have been investigated in the gas phase by traveling wave ion mobility mass spectrometry (TW IMS) and DFT calculations. The TW IMS experiments provided evidence for the formation of these important intermediates in the gas phase, and they identified the predominant aggregation mode (hydrogen bond vs. covalent C-C) as a function of the nature of the interacting carbene-azolium pairs.

Keywords: carbenes; density functional calculations; dimerization; hydrogen bonds; mass spectrometry; nitrogen heterocycles.