QCN-Based Analysis for Predicting the Quality of Resulting Electrospun Nanofiber: Effect of Real-Time Transient Rheological Properties of Precursor Solution on Electrospinning

J Nanosci Nanotechnol. 2019 Apr 1;19(4):2399-2403. doi: 10.1166/jnn.2019.15986.

Abstract

There is a large margin between the mechanical properties and morphology of electrospun fibers required in each area. The produced fibers show a large difference depending on the external environment such as temperature, humidity, and season even in optimum concentration and same electrospinning set-up. The properties of polymer solution among the parameters are the largest determinant of the mechanical strength and diameter of electrospun fibers. Herein, the accurate predicting system in advance to electrospinning is required. In this study, we conduct a comparative study on the viscosity (measured by Brookfield rheometer) and the transient mass change and evaporation speed by our lab-made QCN in order to establish a predicting system for the quality of fiber. It was possible to measure the change of mass of the polymer solution in real-time using the lab-made QCN as well as calculating the volatility, the evaporation time of the polymer solution. The volatility of the polymer solution has a significant impact on the quality of the electrospun fiber including the diameter, uniformity, and surface topography. We compare the mass changes, viscosimetric viscosities, and the quality of corresponding fiber, and reveal the potential of QCN as a tool predicting pre-electrospinning fibers.

Publication types

  • Research Support, Non-U.S. Gov't