Damage Characteristics of PELE Projectile with Gradient Density Inner Core Material

Materials (Basel). 2018 Nov 27;11(12):2389. doi: 10.3390/ma11122389.

Abstract

The PELE (penetration with enhanced lateral efficiency) projectile is a new type of safe ammunition which can form a large number of fragments after perforating the target, and does not depend on any pyrotechnics. The damage characteristics of PELE projectile mainly include the penetration ability and fragmentation effect. There are many factors affecting the damage characteristics of PELE projectile, and this paper attempts to study the damage characteristics of PELE projectile, from the point of view of changing the single core material. Therefore, four different inner core combination types were designed in this paper, namely, zero gradient-I type (PE), zero gradient-II type (Al), positive gradient type (PE + Al), and negative gradient type (Al + PE). With the help of a more mature numerical simulation method, the studies were carried out from several aspects, such as the axial residual velocity of projectile, the radial scattering velocity of fragments, the radial scattering radius of fragments, and the residual length of projectile. The axial residual velocity of projectile can characterize the penetration ability of projectile, the radial scattering velocity and radial scattering radius of fragments can predict the damage area of fragments, and the residual length of projectile can reflect the fragment conversion rate of casing. The results indicate that the negative gradient inner core combination is superior to the other three combinations in terms of the penetration ability and fragmentation effect. Under the same impact velocity, the maximum radial velocity and radial scattering radius of fragments mainly depend on the front inner core material, and these two parameters will increase appropriately with the increase of the strength of front inner core material. Similarly, the residual length of projectile can be reduced, or the fragment conversion rate can be enhanced, by properly reducing the strength of rear inner core material. The conclusions obtained in this paper can provide a reference for engineering applications.

Keywords: PELE; fragmentation effect; gradient density; inner core; penetration ability; penetration with enhanced lateral efficiency.